Variational Gaussian Inference for Bilinear Models of Count Data
نویسندگان
چکیده
Bilinear models of count data with Poisson distribution are popular in applications such as matrix factorization for recommendation systems, modeling of receptive fields of sensory neurons, and modeling of neural-spike trains. Bayesian inference in such models remains challenging due to the product term of two Gaussian random vectors. In this paper, we propose new algorithms for such models based on variational Gaussian (VG) inference. We make two contributions. First, we show that the VG lower bound for these models, previously known to be intractable, is available in closed form under certain non-trivial constraints on the form of the posterior. Second, we show that the lower bound is biconcave and can be efficiently optimized for mean-field approximations. We also show that bi-concavity generalizes to the larger family of log-concave likelihoods, that subsume the Poisson distribution. We present new inference algorithms based on these results and demonstrate better performance on real-world problems at the cost of a modest increase in computation. Our contributions in this paper, therefore, provide more choices for Bayesian inference in terms of a speed-vs-accuracy tradeoff.
منابع مشابه
Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models
Probabilistic matrix factorization methods aim to extract meaningful correlation structure from an incomplete data matrix by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to such large scale bilinear models. However, current algorithms are of the alternate updating or stochastic gradient descent type, slow to converge a...
متن کاملSparse Variational Inference for Generalized Gaussian Process Models
Gaussian processes (GP) provide an attractive machine learning model due to their nonparametric form, their flexibility to capture many types of observation data, and their generic inference procedures. Sparse GP inference algorithms address the cubic complexity of GPs by focusing on a small set of pseudo-samples. To date, such approaches have focused on the simple case of Gaussian observation ...
متن کاملStochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints
Gaussian process latent variable models (GPLVMs) are a probabilistic approach to modelling data that employs Gaussian process mapping from latent variables to observations. This paper revisits a recently proposed variational inference technique for GPLVMs and methodologically analyses the optimality and different parameterisations of the variational approximation. We investigate a structured va...
متن کاملGaussian Variational Approximate Inference for Generalized Linear Mixed Models
Variational approximation methods have become a mainstay of contemporary Machine Learning methodology, but currently have little presence in Statistics. We devise an effective variational approximation strategy for fitting generalized linear mixed models (GLMM) appropriate for grouped data. It involves Gaussian approximation to the distributions of random effects vectors, conditional on the res...
متن کاملBayesian functional principal components analysis for binary and count data
Recently, van der Linde (2008) proposed a variational algorithm to obtain approximate Bayesian inference in functional principal components analysis (FPCA), where the functions were observed with Gaussian noise. Generalized FPCA under different noise models with sparse longitudinal data was developed by Hall, Müller and Yao (2008), but no Bayesian approach is available yet. It is demonstrated t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014